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ABSTRACT 

 
Regularities in some complex systems can sometimes be expressed in terms of simple laws. Some peculiar regularities 
are identified concerning photoacoustic (optoacoustic) phenomena. In particular, the acoustic signals following phase 
transitions in liquid irradiated by laser pulses are distributed by magnitude according to the Zipf’s law. This power law 
distribution describes many man made and naturally occurring phenomena, including city sizes, incomes, word 
frequencies, and earthquake magnitudes. This law suggests connection with anomalous decay, i.e. it implies that small 
occurrences are extremely common, whereas large instances are extremely rare. 
We use this law for signal processing in the course of optoacoustic diagnostics of diluted suspensions. The irradiation of 
an inhomogeneous liquid sample with a long train of short laser pulses and subsequent recording of a histogram of the 
magnitudes of the acoustic responses can serve as a diagnostic tool for various applications. The absorption of an 
incident light by a suspended particle may cause a cavitation event. The random cavitation events also obey the Zipf’s 
law, this fact being used for detection of individual particles. 
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1. INTRODUCTION 
 

Zipf's law is the observation that frequency of occurrence of some event as a function of the rank when the rank is 
determined by the above frequency of occurrence, is a power-law function with the exponent close to unity. George 
Kingsley Zipf (1902-1950), a Harvard linguistics professor, was definitely, not the first who applied decreasing power 
functions to approximation of sampling distributions. However the results of his research were rather impressive and he 
was followed by numerous researchers in various fields. These followers have immortalized his name in the name of the 
law we are going to speak about. The frequency differential form of the Zipf distribution law can be presented by an 
expression1 
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where n(x) is the frequency of occurrence, C  and α – are constants. Zipf’s law is an asymmetric right-hand distribution 
with an anomalous long "tail". This means, that there are individual counts in the sample having values sufficiently 
exceeding sample average. The constant α (often called Zipf’s parameter) is the very one which is responsible for length 
of the  tail. 
Any sampling statistical distribution has both frequency differential and rank forms. Usually it is not too important what 
form to choose, if the question is natural sciences. However if the sampling volumes are not great, the rank form is 
preferable. The rank form assumes that instead of a grouping the data they are ranged in such a manner that the first 
place is awarded to the a unit with the greatest value of the attribute, following is a unit which is exceeded only by the 
first-rank unit and so on. The rank form is introduced as follows: 
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where r – is a rank of each of the unit of population according to its individual value x, A and B - constants. The rank 
form of the Zipf’s law distribution (2) is also called a Mandelbrot’s distribution2,3. 



Growing interest to the Zipf’s law is explained by the fact that its structural features are observed on distribution of 
many parameters of biological, information, social, economic and other complex systems2-4. 
The known skeptical attitude to some of Zipf’s ideas (as it was pointed out by B.Mandelbrot3, Zipf sometimes tried to 
find universal laws in those fields where they actually were not present) should not prevent us to use his heritage as a 
convenient analytical tool for the records’ interpretation while doing optoacoustic (OA) diagnostics of the various 
inhomogeneous liquid media. 
 

2. PROBABILISTIC ISSUES OF OPTOACOUSTIC CONVERSION 
 

A researcher of a sound generation by laser radiation sometimes comes up against the probabilistic nature of the effect. 
For example, there were conducted studies of the random acoustic field generated in the sea by the laser irradiation of a 
wavy surface. Also, the contribution to the overall acoustic signal from a random constituent irradiated by an ensemble 
of gas bubbles which are always present in the subsurface sea layer and hence distort the optoacoust signal pattern 
predicted by simplified theoretical models. However the most prominent example of the statistical nature of 
optoacoustic conversion is a so-called effect of optoacoustic cavitation upon a pulse laser irradiation of the liquid 
sample containing insoluble absorbing particles. The probe itself is almost transparent for radiation, however the 
particles are heated by the laser pulse. Then, they deliver energy to the host liquid, the energy value sometimes is 
sufficient to launch cavitation process which in turn serves as the source of a powerful sound.  
First studies of the probabilistic issues of optoacoustic conversion in the low absorbing inhomogeneous liquids dates 
from the beginning of the Nineties. As it was already well known by this time, OA conversion allowed to achieve the 
record sensitivity of detection of small amount of impurities in both biological and medical solutions and suspensions. 
However the instability of magnitude of the acoustic response from one laser shot to another sacrificed all theoretical 
advantages of a method. A nature of this instability as well as mechanisms, inducing it, called for special research. So 
let us concentrate on the following OA conversion geometry.  
The interaction of a laser beam with weakly absorbing inhomogeneous liquid containing absorbing suspended particles 
gives rise to optoacoustic conversion within the pencil-shape irradiated volume. Hence the outgoing acoustic signal is 
usually recorded in the lateral direction outside of the illuminated volume. At low fluence, the optoacoustic signal 
consists of the thermoacoustic response of the heated host liquid and as well as of heated particles. If a definite fluence 
threshold condition is satisfied, the temperature of the particles can exceed the boiling temperature of the host liquid. A 
vapor layer appears adjacent to the particle, which experiences rapid expansion thus giving rise to an effective acoustic 
signal. The overall acoustic signal obtains so-called cavitation constituent.  
As a result, the observed signal is marked by magnitude and waveform both having a random character since the overall 
signal is composed of the pulses coming from different points and having other random parameters. So, it became 
recognized, that optoacoustic conversion in low absorption liquids gives rise to so-called combinatory conversion 
mechanism comprised of a regular response from a host liquid and random signals from cavitation events launched by 
overheated particles.  
Hence, the classical formula for the magnitude of outgoing acoustical response put into the basis of optoacoustic 
spectroscopy5 
 

2 3/ 2 1/ 2
0( ) /( ),m pp c E a c rµβ π≈                                                                                       (3) 

 
applied to the low absorption suspensions, at best describes only the regular constituent of the overall response. Due to 
the sufficient variations of acoustic response magnitude from one laser shot to another this formula may become useless 
(here µ is optical absorption coefficient, β is thermal expansion coefficient, с –is sound velocity, E is laser pulse energy, 
a0 is the beam waist, r is the broadside distance from the beam axis to the point of observation,  cp is the specific heat of 
the host liquid). The random process calls for examination of the energy threshold which this or that particle should 
exceed to launch an individual cavity growth.  
The simplest observation of the phenomenon discussed can be provided as follows. The laser beam from XeCl laser was 
focused in a sample representing distilled twice filtered water. The sample is contained in a cell having UV quartz 
windows. After filtering procedures only particles less than 0.3 um in diameter remained suspended in the sample. The 
samples were irradiated by laser pulses at a rate of 0.2 Hz. Each series included 1000 shots at a predetermined energy 
each. The laser energy was increased from one series to another. The in-phase pickup of these random signals is 
possible if a relatively low frequency (for example, up to 200 kHz) transducer positioned out of the irradiated “pencil-



shape” volume. The first peak detection of the acoustic signal is obtained by an appropriate gating of the incoming 
response. After recording the acoustic responses generated by many subsequent laser shots, one can build a histogram of 
acoustic magnitudes and use it as a diagnostic tool. The results in the form of two selected histograms are shown in 
Figure 1. 
 

  
 

Figure 1. Histograms of amplitudes of the acoustic 
signals obtained from the irradiation of distilled water 
with two series of 1000 laser each. The horizontal axis 
gives the magnitude of the response in Pa, while the 
vertical one depicts a number of events. The first series 
corresponds to the fluence 0.08 J/sq.cm (1), while the 
second is 0.2 J/sq.cm (2). So, the first series 
corresponds to pure thermoacoustic conversion and  the 
most probable magnitude is well defined by Equation 
(3). The second series shows the combinatory 
mechanism of OA conversion the signal having strong 
cavitation constituent. 
 

Figure 2. The sample is a fresh tap water. It contains a 
lot of microscopic bubbles, cavitation nuclei and 
suspended particles. There are shown log-log magnitude 
histograms the acoustic signals from an irradiation of 
the probe by two series of  1000 laser pulses each. The 
first series corresponds to the fluence 0.36 J/sq.cm (1), 
while the second is 0.45 J/sq.cm (2). Each right slope is 
well approximated with a pair of inclined straight lines, 
thus forming Zipf’s “knee”6. 
 

 
 
It is for some reason generally believed that if OA conversion is accompanied by phase transitions the signal instability 
is inevitable. However the experiments conducted at large laser fluence values yield that signal becomes stable again. It 
turns out, that instability of the response is an attribute of only limited laser energy range.  
The histograms obtained in this range, are rather characteristic - the most probable value of parameter (a maximum of 
the histogram) is displaced to its left edge, while the right part is presented by an abnormally long "tail". It is very 
similar to Zipf’s distribution. However we should investigate this with the use of criteria more rigorous than a simple 
artistic perception. Besides, it is very important to describe conversion of the histogram with growth of laser energy. 
Also, we should define the energy value which is necessary to reach in order to return the parameters of conversion 
under a conventional Gaussian law. 
Next, we are going to give the brief review of statistic analysis methods used by experts in the field of Zipf’s law. Than 
we should use some of their experience while conducting Monte Carlo simulation related to the problem we are 
discussing in the paper.  
 



3. ZIPF’S LAW AS A TOOL. ZIPF’S LAW MANIFESTATION  
IN THE NATURE AND IN THE SOCIETY 

 
Recently the rank from representation "of long-tail" distributions began to penetrate into natural-science disciplines. 
One can mention for example, the distribution of elements in the Earth's crust by weight, asteroids in the asteroid belt by 
mass, distribution of cosmic rays by energy. Some other sources consider distribution of percolation processes.  
Among recent papers let us mention7. The paper deals with the application of the Zipf’s law to description of the 
distribution of hot nuclei clasters by their weight and charge for 129Xe. The rank approach is applied for definition of 
temperature of phase transition of the system. The parameter α appeared to be very informative and convenient tool. 
With the growth of temperature of the system from 3 up to 7 MeV the tail of distribution was extended, value α 
decreased from 5.77 to 0.56, and the point of phase transition was found out at the value predicted by model, i.e. at α 
=1. It is no wonder from the point of view of the Zipf’s law architecture because just at this value α the first moment of 
distribution ceases to converge. It is an indirect indication of transition of the system to less ordered condition. 
Zipf’s law is much more popular in the society-based disciplines. However the physicists (namely, the experts in 
nonlinear dynamics) are also interested in Zipf’s law manifestation in the society and ecology fields. Here are just few 
examples of papers published in physics journals dealing with various kinds of Zipf-like distributions: distribution of the 
companies and firms by size8, distribution of soccer shooters by scored goals9, distribution of infringers of road rules by 
the size of penalties10. Also, the physicsl journals discuss other specific problems of the humanities, for example, Zipf 
strategy of investments11, Zipf’s distribution of citations in scientific literature12. 
The typical Zipf’s distributions relating the humanities, are basically characterized by small values α, approximately in 
half of all cases α<1.5 while α>10 is only in 5 % of all cases met. The distributions with small values α (i.e. those 
having long tails) describe complex hierarchical systems. Small values α define all distributions in linguistics. For 
example, for both Russian and  English languages the distribution of words on their popularity is defined by α≈11.  
Less flat tails are typical for the distributions relating to the phenomena specific for the Internet and other information 
technologies. For example, the distribution of web-sites on visitors number, the distribution on web-sites by number of 
pages contained, the distribution on pages by number links etc13.  This group is determined by a range 1<α<2. 
The advanced hierarchy systems are the systems of individuals with essentially differing abilities. Such are the 
distinctions in the intellectual ability, revealed by various tests using open scales14. Such are the distinctions in scientific 
productivity of the scientists determined by well-known scientometriс methods3,12. The scientists comprise very 
particular group of almost equally educated people, mostly working in similar conditions. Seemingly, one would expect 
they will have output distributed about the Gaussian curve around some mean number of papers published. Nothing of 
the kind! The number of papers varies greatly from one scientist to another. The overwhelming majority of authors do 
not go beyond a single paper. And vice versa, there are some few authors with an extraordinary paper productivity 
(several hundred per career). The distinction of scientific articles with respect to their citations is also huge. Typical 
scientometric distributions are characterized by values 1<α≤ 3. 
Shorter tails mark distributions relating to economy and demography. Such distributions have values 1.5<α≤5. For 
example, these are distributions of people by income, cities by population15 and others. 
Zipf’s law is less popular in physiology, anthropometry and similar disciplines because the distinctions of individuals 
with respect to their height, weight or reproductive potential are not so great, as distinctions in mental abilities. If met, 
the Zipf distribution here has a short tail with inevitability. Some of the papers refer to the famous example of 
distribution of the divorced Italian women by a number of their children. The analysis is carried out on a file of 1718000 
women, 500 women having 19 children each, 1500 - 18 children each and so on. The value of determining parameter is 
α≈8. 
This very brief journey into the history of Zipf’s law applications to various fields of knowledge, shows, that a standard 
practice of the analysis of the distributions which are close to Zipf’s law is revealing conditions at which the system is 
characterized by α=1 (also the cases α=2 and 1α �  are often considered). For example if the Zipf’s parameter reaches 
1, there appears a convergence of the first central momentum of distribution. In turn this allows to draw a conclusion 
about transition of this or that system to more ordered condition.  
 
 



4. APPLYING ZIPF’S LAW TO OPTOACOUSTIC DIAGNOSTICS  
OF INHOMOGENEOUS LIQUID MEDIA 

 
To become certain that the tail of histograms fits Zipf’s law it is necessary to plot them in log-log coordinate system. 
Then, the tail should take the form of inclined straight line according to Equation (1) its slope being equal to 
arctan(1+α). This can be seen from two moderate fluence series depicted at Figure 2. Such long-tail distributions are 
usually marked with the absence of the first-order statistical momentum. That should be taken into account while 
processing the data from OA experiments. It is evident that fluence growth leads to the slope steeping. Finally, at well-
above threshold conditions α→∞ and histogram returns to the Gaussian form (not shown).  
It seems, flat distribution tails observed when doing optoacoustics of suspensions can be attributed as to a fractal nature 
of phase conversions in disperse media16 and also to certain fractal properties of wave processes17. So, the non-Gaussian 
distribution of acoustic pulses by magnitude is probably related to a fractal nature of optical breakdown in the 
suspensions having the tendency to clasters’ formation. In particular, it is known, that fractal effects in radiation can 
take place already in case of an ensemble of independent point radiators with fractal spatial distribution (it was just the 
case of low energy experiment carried out). Let us turn from quality considerations to quantity analysis of the 
phenomenon. 

 
5. MONTE CARLO SIMULATION OF THE CAVITATION CONSTITUENT 

 
The evaporation threshold depends greatly on the material of the particle. This fact presents the possibility to investigate 
suspension by means of optoacoustics. Particles of high absorption and high effusivity such as metal particles are of 
special interest for our study and are considered here in more detail.  
In order to simplify estimates within the assumption of independent and single scattering in the medium, we deal with 
the dilute solutions18 also we consider the host liquid as a non-absorbing medium. If ε is the laser fluence at the arbitrary 
point of the beam cross-section, then εσ is the energy absorbed by a particle which occasionally finds itself at this very 
point. Here σ is the absorption cross-section of a particle, 

2 / 4,dσ πξ≈                                                                                                                (4) 
where d is the diameter of the particle, and ξ is a coefficient19, depending on the refraction index of a particle as well as 
on the ratio d/λ, where λ is an optical wavelength. The absorbed energy causes heating of a particle with subsequent 
heating and evaporating of the adjacent water layer. Since the effusivity of metal is much higher than that of water, it is 
natural that a major fraction of the energy absorbed by a particle is spent to heat itself. Hence, the energy conservation 
equation for threshold fluence εth is  
 

3
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where ρ is the density of particle, C is a specific heat of the particle, ∆T=80ºC. As a result we get for the threshold 
fluence for these type of the particles; 

th 2 / 3 ,Cd Tε ρ ξ≈ ∆                                                                                                  (6) 
that yields εth ~ d, if  ξ is independent of d that is valid for large particles, d>λ, or, alternativaley for small particles of 
some specific kind. Such particles, for example, can be gold nanoparticles, now popular in medical diagnostic practice. 
In the further simulation we just consider the suspension made of such particles. At simulation it was accepted, that:  
− The amplitude of a resulting signal is represented by the sum of amplitudes of signals from each particle which have 

absorbed energy with a value exceeding the threshold one. "Underthreshold" particles do not radiate any sound. 
− The amplitude of a signal, radiated by an overthreshold particle p is defined by an expression 2

th( )p d ε ε−∼ 20. 
All the particles have the same diameter d, i.e. we deal with monodisperse suspension. 

− The total number of particles in a sample was 100. They have random positions in the probe. Only a small share of 
the ensemble is irradiated by a laser beam. According to εth for the given diameter of particles the normalized 
fluence in the focal waist ε0 is introduced which is the key simulation parameter. For example, ε0 =1 means, that 



fluence in the focal waist is equal to εth (the energy value sufficient for heating the given particle to 80С and 
achieving the boiling threshold);  

− The second basic parameter is the focal area diameter. It is set equal to 1, other geometrical parameters being related 
to it. So, the length of focal area is equal to 30.  

− The space where the OA conversion takes place and where 100 particles find themselves in random positions 
changing from one laser pulse to another is represented by a cylinder coaxially enveloping the laser beam. The 
length of the cylinder expressed in focal area diameter units is equal to 6000, its cross-section diameter is equal to 6. 

The simulation included Monte Carlo procedure for 7 series each having 200000 trials. The fluence ε0 was maintained 
constant within each series. It took seven values changing from one series to another, i.e ε0 = 1.1; 1.3; 2; 5; 10; 100, 105.  
Records of series were used for construction of histograms, as well as of rank distributions, for definition of mean 
sample magnitudes and other statistical characteristics of ОА conversion. 
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Figure 3. Model log-log histograms of magnitudes for a set of laser fluence values ε0 =1.1 (curve 1); 1.3 (2); 2 (3); 5 
(4); 10 (5); 100 (6), 105 (curve 7) 
 
The results of the simulation according to this simplified model are presented in Figures 3-5. Figure 3 shows the 
histograms distributed over 20 bins each. It appears that 5 first series have the most probable (modal) acoustic signal 
magnitude value equal to zero (not shown). The log-log histograms for series 1-5 also exhibit knees typical for Zipf’s 
distributions. Within small magnitude range the curves are rather flat corresponding to Zipf’s parameter α≈1 of the 
Equation (1). On the contrary, within large magnitude range the histograms are steep, i.e 1α � . The last two series 
(curves 6 and 7) show the principal phenomena, i.e. the formation of nonzero modal magnitude.  
To get the simplified estimate of α as a function of ε0 there were plotted rank magnitude distributions for the same 
series (Figure 4). Now, the curves can be approximated by the Equation (2) and as opposed to Figure 3, the large 
magnitude range occupies the left part of the plot (that means that all 200000 scores for each series are sorted according 
to their magnitudes). The slope of each auxiliary chord is approximately equal to 1/α. 
Figure 5 shows fluence dependencies of various optoacoustic conversion parameters as derived from the simulation. 
The shape of a curve 1 (mean sample magnitude) is close to the simplest prediction of papers5,21. 
Let us point out that curve 1 and curve 2 (median magnitude) converge with the fluence growth. This is an indication 
that optoacoustic conversion parameters turn to good repeatability. The growth of α(ε0) from 5 to 10 also points to this 
tendency. As we know, at α≈1 Zipf’s distribution is almost no different from Gaussian law.  



 
Figure 4. Model log-log rank magnitude distribution for the same set of laser fluence values ε0. The purpose that is 
served by a set of tilted straight lines is the determination of average slope of each curve within the range of largest 
magnitudes (at the 1/e level, horizontal straight line). Then, the slope thus derived is used to calculate the Zipf’s 
parameter α. 
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Figure 5. Dimensionless acoustic signal magnitude vs laser fluence (right vertical axis). Mean magnitude (curve 1) and 
median magnitude (curve 2) are shown.  Zipf’s parameter α vs laser fluence (curve 3) is layed off along the left Y-axis. 

 
6. CONCLUSIONS 

 
The simplified Monte Carlo simulation, in general, confirmed the experimental observationof the Zipf’s law signal 
magnitude distribution within the moderate energy fluence range in the course of optoacoustic conversion in 
inhomogeneous liquids. The previous experience of application of Zipf’s statistics to various fields of knowledge helps 
to restore the statistical parameters of OA conversion. 



Other important conclusion consists in necessity of taking into account the mean sample acoustic magnitude vs laser 
energy in the case when fluence only insignificantly exceeds the fluence of pure thremoacoustic conversion. The 
magnitude histograms have especially long tails, and, hence, α<1. As we now know, this means that mean sample 
acoustic magnitude depends on the sample volume, i.e. it does not converge to any finite quantity as it is typical for 
Gaussian law. This unstable character of mean magnitude, apparently, explains the contradictions between different 
papers of the Eighties and Nineties dealing with acoustic response magnitude pm as a function of laser energy input E. 
The papers presented a variety of experimental curves of pm(E), not consistent with each other, power law 
approximation yielding power from 5/6 up to 4).  
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